A Shared Task on Bandit Learning for Machine Translation
نویسندگان
چکیده
We introduce and describe the results of a novel shared task on bandit learning for machine translation. The task was organized jointly by Amazon and Heidelberg University for the first time at the Second Conference on Machine Translation (WMT 2017). The goal of the task is to encourage research on learning machine translation from weak user feedback instead of human references or post-edits. On each of a sequence of rounds, a machine translation system is required to propose a translation for an input, and receives a real-valued estimate of the quality of the proposed translation for learning. This paper describes the shared task’s learning and evaluation setup, using services hosted on Amazon Web Services (AWS), the data and evaluation metrics, and the results of various machine translation architectures and learning protocols.
منابع مشابه
The UMD Neural Machine Translation Systems at WMT17 Bandit Learning Task
We describe the University of Maryland machine translation systems submitted to the WMT17 German-English Bandit Learning Task. The task is to adapt a translation system to a new domain, using only bandit feedback: the system receives a German sentence to translate, produces an English sentence, and only gets a scalar score as feedback. Targeting these two challenges (adaptation and bandit learn...
متن کاملFindings of the 2017 Conference on Machine Translation (WMT17)
This paper presents the results of the WMT17 shared tasks, which included three machine translation (MT) tasks (news, biomedical, and multimodal), two evaluation tasks (metrics and run-time estimation of MT quality), an automatic post-editing task, a neural MT training task, and a bandit learning task.
متن کاملBandit Structured Prediction for Learning from Partial Feedback in Statistical Machine Translation
We present an approach to structured prediction from bandit feedback, called Bandit Structured Prediction, where only the value of a task loss function at a single predicted point, instead of a correct structure, is observed in learning. We present an application to discriminative reranking in Statistical Machine Translation (SMT) where the learning algorithm only has access to a 1 − BLEU loss ...
متن کاملBandit Structured Prediction for Neural Sequence-to-Sequence Learning
Bandit structured prediction describes a stochastic optimization framework where learning is performed from partial feedback. This feedback is received in the form of a task loss evaluation to a predicted output structure, without having access to gold standard structures. We advance this framework by lifting linear bandit learning to neural sequence-to-sequence learning problems using attentio...
متن کاملLearning Structured Predictors from Bandit Feedback for Interactive NLP
Structured prediction from bandit feedback describes a learning scenario where instead of having access to a gold standard structure, a learner only receives partial feedback in form of the loss value of a predicted structure. We present new learning objectives and algorithms for this interactive scenario, focusing on convergence speed and ease of elicitability of feedback. We present supervise...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017